3.70 \(\int \frac{\sin ^2(c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=105 \[ \frac{7 \tanh ^{-1}\left (\frac{\sqrt{a} \cos (c+d x)}{\sqrt{2} \sqrt{a \sin (c+d x)+a}}\right )}{2 \sqrt{2} a^{3/2} d}-\frac{2 \cos (c+d x)}{a d \sqrt{a \sin (c+d x)+a}}-\frac{\cos (c+d x)}{2 d (a \sin (c+d x)+a)^{3/2}} \]

[Out]

(7*ArcTanh[(Sqrt[a]*Cos[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sin[c + d*x]])])/(2*Sqrt[2]*a^(3/2)*d) - Cos[c + d*x]/(2
*d*(a + a*Sin[c + d*x])^(3/2)) - (2*Cos[c + d*x])/(a*d*Sqrt[a + a*Sin[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.128016, antiderivative size = 105, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.174, Rules used = {2758, 2751, 2649, 206} \[ \frac{7 \tanh ^{-1}\left (\frac{\sqrt{a} \cos (c+d x)}{\sqrt{2} \sqrt{a \sin (c+d x)+a}}\right )}{2 \sqrt{2} a^{3/2} d}-\frac{2 \cos (c+d x)}{a d \sqrt{a \sin (c+d x)+a}}-\frac{\cos (c+d x)}{2 d (a \sin (c+d x)+a)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[Sin[c + d*x]^2/(a + a*Sin[c + d*x])^(3/2),x]

[Out]

(7*ArcTanh[(Sqrt[a]*Cos[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sin[c + d*x]])])/(2*Sqrt[2]*a^(3/2)*d) - Cos[c + d*x]/(2
*d*(a + a*Sin[c + d*x])^(3/2)) - (2*Cos[c + d*x])/(a*d*Sqrt[a + a*Sin[c + d*x]])

Rule 2758

Int[sin[(e_.) + (f_.)*(x_)]^2*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(b*Cos[e + f*x]*(
a + b*Sin[e + f*x])^m)/(a*f*(2*m + 1)), x] - Dist[1/(a^2*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(a*m - b
*(2*m + 1)*Sin[e + f*x]), x], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]

Rule 2751

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> -Simp[(d
*Cos[e + f*x]*(a + b*Sin[e + f*x])^m)/(f*(m + 1)), x] + Dist[(a*d*m + b*c*(m + 1))/(b*(m + 1)), Int[(a + b*Sin
[e + f*x])^m, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] &&  !LtQ[m,
-2^(-1)]

Rule 2649

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, (b*C
os[c + d*x])/Sqrt[a + b*Sin[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\sin ^2(c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx &=-\frac{\cos (c+d x)}{2 d (a+a \sin (c+d x))^{3/2}}+\frac{\int \frac{-\frac{3 a}{2}+2 a \sin (c+d x)}{\sqrt{a+a \sin (c+d x)}} \, dx}{2 a^2}\\ &=-\frac{\cos (c+d x)}{2 d (a+a \sin (c+d x))^{3/2}}-\frac{2 \cos (c+d x)}{a d \sqrt{a+a \sin (c+d x)}}-\frac{7 \int \frac{1}{\sqrt{a+a \sin (c+d x)}} \, dx}{4 a}\\ &=-\frac{\cos (c+d x)}{2 d (a+a \sin (c+d x))^{3/2}}-\frac{2 \cos (c+d x)}{a d \sqrt{a+a \sin (c+d x)}}+\frac{7 \operatorname{Subst}\left (\int \frac{1}{2 a-x^2} \, dx,x,\frac{a \cos (c+d x)}{\sqrt{a+a \sin (c+d x)}}\right )}{2 a d}\\ &=\frac{7 \tanh ^{-1}\left (\frac{\sqrt{a} \cos (c+d x)}{\sqrt{2} \sqrt{a+a \sin (c+d x)}}\right )}{2 \sqrt{2} a^{3/2} d}-\frac{\cos (c+d x)}{2 d (a+a \sin (c+d x))^{3/2}}-\frac{2 \cos (c+d x)}{a d \sqrt{a+a \sin (c+d x)}}\\ \end{align*}

Mathematica [C]  time = 0.271054, size = 134, normalized size = 1.28 \[ -\frac{\left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right ) \left (-3 \sin \left (\frac{1}{2} (c+d x)\right )+2 \sin \left (\frac{3}{2} (c+d x)\right )+3 \cos \left (\frac{1}{2} (c+d x)\right )+2 \cos \left (\frac{3}{2} (c+d x)\right )+(7+7 i) (-1)^{3/4} (\sin (c+d x)+1) \tanh ^{-1}\left (\left (\frac{1}{2}+\frac{i}{2}\right ) (-1)^{3/4} \left (\tan \left (\frac{1}{4} (c+d x)\right )-1\right )\right )\right )}{2 d (a (\sin (c+d x)+1))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sin[c + d*x]^2/(a + a*Sin[c + d*x])^(3/2),x]

[Out]

-((Cos[(c + d*x)/2] + Sin[(c + d*x)/2])*(3*Cos[(c + d*x)/2] + 2*Cos[(3*(c + d*x))/2] - 3*Sin[(c + d*x)/2] + (7
 + 7*I)*(-1)^(3/4)*ArcTanh[(1/2 + I/2)*(-1)^(3/4)*(-1 + Tan[(c + d*x)/4])]*(1 + Sin[c + d*x]) + 2*Sin[(3*(c +
d*x))/2]))/(2*d*(a*(1 + Sin[c + d*x]))^(3/2))

________________________________________________________________________________________

Maple [A]  time = 0.549, size = 143, normalized size = 1.4 \begin{align*}{\frac{1}{4\,d\cos \left ( dx+c \right ) } \left ( \sin \left ( dx+c \right ) \left ( 7\,\sqrt{2}{\it Artanh} \left ( 1/2\,{\frac{\sqrt{a-a\sin \left ( dx+c \right ) }\sqrt{2}}{\sqrt{a}}} \right ) a-8\,\sqrt{a-a\sin \left ( dx+c \right ) }\sqrt{a} \right ) +7\,\sqrt{2}{\it Artanh} \left ( 1/2\,{\frac{\sqrt{a-a\sin \left ( dx+c \right ) }\sqrt{2}}{\sqrt{a}}} \right ) a-10\,\sqrt{a-a\sin \left ( dx+c \right ) }\sqrt{a} \right ) \sqrt{-a \left ( \sin \left ( dx+c \right ) -1 \right ) }{a}^{-{\frac{5}{2}}}{\frac{1}{\sqrt{a+a\sin \left ( dx+c \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(d*x+c)^2/(a+a*sin(d*x+c))^(3/2),x)

[Out]

1/4*(sin(d*x+c)*(7*2^(1/2)*arctanh(1/2*(a-a*sin(d*x+c))^(1/2)*2^(1/2)/a^(1/2))*a-8*(a-a*sin(d*x+c))^(1/2)*a^(1
/2))+7*2^(1/2)*arctanh(1/2*(a-a*sin(d*x+c))^(1/2)*2^(1/2)/a^(1/2))*a-10*(a-a*sin(d*x+c))^(1/2)*a^(1/2))*(-a*(s
in(d*x+c)-1))^(1/2)/a^(5/2)/cos(d*x+c)/(a+a*sin(d*x+c))^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sin \left (d x + c\right )^{2}}{{\left (a \sin \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(d*x+c)^2/(a+a*sin(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate(sin(d*x + c)^2/(a*sin(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

Fricas [B]  time = 1.76778, size = 725, normalized size = 6.9 \begin{align*} \frac{7 \, \sqrt{2}{\left (\cos \left (d x + c\right )^{2} -{\left (\cos \left (d x + c\right ) + 2\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 2\right )} \sqrt{a} \log \left (-\frac{a \cos \left (d x + c\right )^{2} + 2 \, \sqrt{2} \sqrt{a \sin \left (d x + c\right ) + a} \sqrt{a}{\left (\cos \left (d x + c\right ) - \sin \left (d x + c\right ) + 1\right )} + 3 \, a \cos \left (d x + c\right ) -{\left (a \cos \left (d x + c\right ) - 2 \, a\right )} \sin \left (d x + c\right ) + 2 \, a}{\cos \left (d x + c\right )^{2} -{\left (\cos \left (d x + c\right ) + 2\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 2}\right ) + 4 \,{\left (4 \, \cos \left (d x + c\right )^{2} +{\left (4 \, \cos \left (d x + c\right ) - 1\right )} \sin \left (d x + c\right ) + 5 \, \cos \left (d x + c\right ) + 1\right )} \sqrt{a \sin \left (d x + c\right ) + a}}{8 \,{\left (a^{2} d \cos \left (d x + c\right )^{2} - a^{2} d \cos \left (d x + c\right ) - 2 \, a^{2} d -{\left (a^{2} d \cos \left (d x + c\right ) + 2 \, a^{2} d\right )} \sin \left (d x + c\right )\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(d*x+c)^2/(a+a*sin(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

1/8*(7*sqrt(2)*(cos(d*x + c)^2 - (cos(d*x + c) + 2)*sin(d*x + c) - cos(d*x + c) - 2)*sqrt(a)*log(-(a*cos(d*x +
 c)^2 + 2*sqrt(2)*sqrt(a*sin(d*x + c) + a)*sqrt(a)*(cos(d*x + c) - sin(d*x + c) + 1) + 3*a*cos(d*x + c) - (a*c
os(d*x + c) - 2*a)*sin(d*x + c) + 2*a)/(cos(d*x + c)^2 - (cos(d*x + c) + 2)*sin(d*x + c) - cos(d*x + c) - 2))
+ 4*(4*cos(d*x + c)^2 + (4*cos(d*x + c) - 1)*sin(d*x + c) + 5*cos(d*x + c) + 1)*sqrt(a*sin(d*x + c) + a))/(a^2
*d*cos(d*x + c)^2 - a^2*d*cos(d*x + c) - 2*a^2*d - (a^2*d*cos(d*x + c) + 2*a^2*d)*sin(d*x + c))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sin ^{2}{\left (c + d x \right )}}{\left (a \left (\sin{\left (c + d x \right )} + 1\right )\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(d*x+c)**2/(a+a*sin(d*x+c))**(3/2),x)

[Out]

Integral(sin(c + d*x)**2/(a*(sin(c + d*x) + 1))**(3/2), x)

________________________________________________________________________________________

Giac [B]  time = 2.30412, size = 486, normalized size = 4.63 \begin{align*} \frac{\frac{4 \,{\left (\frac{\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{a \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1\right )} - \frac{1}{a \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1\right )}\right )}}{\sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}} - \frac{7 \, \sqrt{2} \arctan \left (-\frac{\sqrt{2}{\left (\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a} + \sqrt{a}\right )}}{2 \, \sqrt{-a}}\right )}{\sqrt{-a} a \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1\right )} + \frac{2 \,{\left (3 \,{\left (\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{3} +{\left (\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{2} \sqrt{a} -{\left (\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )} a + a^{\frac{3}{2}}\right )}}{{\left ({\left (\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{2} + 2 \,{\left (\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )} \sqrt{a} - a\right )}^{2} a \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1\right )}}{2 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(d*x+c)^2/(a+a*sin(d*x+c))^(3/2),x, algorithm="giac")

[Out]

1/2*(4*(tan(1/2*d*x + 1/2*c)/(a*sgn(tan(1/2*d*x + 1/2*c) + 1)) - 1/(a*sgn(tan(1/2*d*x + 1/2*c) + 1)))/sqrt(a*t
an(1/2*d*x + 1/2*c)^2 + a) - 7*sqrt(2)*arctan(-1/2*sqrt(2)*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x
+ 1/2*c)^2 + a) + sqrt(a))/sqrt(-a))/(sqrt(-a)*a*sgn(tan(1/2*d*x + 1/2*c) + 1)) + 2*(3*(sqrt(a)*tan(1/2*d*x +
1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^3 + (sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2
 + a))^2*sqrt(a) - (sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))*a + a^(3/2))/(((sqrt(a)
*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2 + 2*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1
/2*d*x + 1/2*c)^2 + a))*sqrt(a) - a)^2*a*sgn(tan(1/2*d*x + 1/2*c) + 1)))/d